Archimedean, Density & Inequality

Theorem (cf. Th 2.4.3 in Bartle) This theorem has six parts of which (I) and (II) are usually referred as Archimedean Property. Proof is given immediately after the statement of each part.

(I) Let x be a real number than there exists a natural number n > x.

Proof. If not then x is an upper bound of the set **N** of natural numbers and hence, by the Axiom III, sup (**N**) exists in R: - let it be denoted by $u : = \sup(N)$. Note that u-1 < u so u-1 is NOT an upper bound of N and so u-1 < n for some natural number n

and hence u < 1+n and so

$$(10+n) \leq u \leq 1+n \quad (absardity) .$$

$$(u being an upper bound of Not (10+n) \in M).$$

(II). Let t >0. Then there exists a natural number n such that 1/n < t.

Proof. Applying (I) to 1/t in place of x, take a natural number n such that 1/t < n (so 1/n < t because n and t are positive).

(III). Let x > 1. Then there exists (uniquely) a natural number n (usually denoted by [x]) such that

$$n \leq x < n + |$$
 (*

<u>Proof.</u> By the well-order principle, there exists the largest natural number n dominated by or equal to x. Equivalently the above displayed inequalities (*) hold.

(IV) Let x be a real number. Then there exists (uniquely) an integer n satisfying (*)

Proof. Extend the well-order principle to Z (the set of integers : If Y is a nonempty subset of Z and is bounded above then Y has the largest element.

(V) Density of Q (the set of rational numbers). Let real numbers x < y. Then there exists a rational number r such that x < r < y. Proof. Progressively we consider the cases below.

(1) Suppose 1 < x < y and y - x > 1. Then the integral part [x] of x satisfies

 $[x] \leq x < [x] + 1 < y,$

(the last inequality holds thanks to the first inequality and the assumption that y > x + 1.)

Thus [x] + 1 has the property required for r.

(2) Suppose 1 < x < y. Then, by the Archimedean Property (**II**, Applied to the positive number y - x), there exists a natural number m such that (1/m) < y-x. Then my -mx > 1 and it follows from case (1) (applied to mx, my in place of x, y) that there exists a natural number n such that mx < n < my, and so n/m is a rational number lying between x, y.

(3) The general case: x < y. By the Archimedean Property **I**, take a natural number k such that k > -x and so -k < x < y and 1 < x+k+1 < y+k+1. By (II), there exists a rational r lying between x+k+1 and y+k+1 and so r-(k+1) is a rational lying between x and y.

Exercise

1. Let x < y. Then there exist natural numbers m, n such that x + 1/m < y-1/n.

Hint: Take n such that 1/n < y-x and then 1/m < y-x-(1/n). Or simply take m = n < (y-x)/2.

2. Let a, b be positive numbers. The a < b iff $a^2 < b^2$ (iff $0 < b^2 - a^2 = (b-a)$ (b+a) iff 0 < (b-a) because b+a and (b+a)^-1 are positive).

3. Let x, y be positive real numbers such that $x^2 < a$ and $y^2 > b$. Show that there exist natural numbers m, n such that $(x + 1/n)^2 < a$ and $(y - 1/m)^2 > b$.

Hint: The first requirement is $x^2 + 2x/n + 1/(n)^2 < a$ which would be satisfied if $x^2 + 2x/n + 1/n < a$ as $1/(n^2)$ is smaller (or equal to) 1/n. Such natural number n does exist by Archimedean property **II**. Similarly for the 2nd part of this exercise.

(VI) Square Root and Density of Irrationals. There exists (unique) z > 0 such that $z^2 = 2$ (that is, z is the positive sq root of 2). R\Q is dense : if x < y then there exists an irrational number t such that x < t < y

Proof. Let A = { a : 0 < a and a^2 < 2}, e.g., 1 belongs to A but A is bounded above by 2 because $a^2 < 2 < 2^2$ and so a < 2 for all a in A. By Axiom III, let z: =sup A. Then z lies in [1, 2]. Shall show that $z^2 = 2$ by showing that z^2 cannot be bigger nor smaller than 2 as detailed below.

Suppose $z^2 < 2$. Then, by, there exists a natural number n such that $(z + 1/n)^2 < 2$ and so (z+1/n) belongs to A and so is dominated by z (which is not possible as 1/n is positive), being the supremun of A.

Next consider the case $z^{2} > 2$. Then, by, there exists a natural number m such that $(z - 1/m)^{2} > 2 > a^{2}$ for all a in A and so z - 1/m > a for all a in A. This implies that z - 1/m dominates z by definition of z; again this is absurd as -1/m is negative. This completes the proof for the first part of **(VI)**. For the 2nd part, let x < y and take (Why exists?) a rational r such that x < r < y and then (with z = sq roof of 2) take a natural number n such that r + z/n < y. Then r+z/n is an irrational number lying between x and y.

Lemma on Inequality ("Making life easier" Lemma)
Support
$$X \le Y + \mathcal{E}$$
 (or $X < Y + \mathcal{E}$) for all
 $\mathcal{E} > 0$. Then $X \le Y$. In particular if $|z| \le \mathcal{E} \neq \mathcal{E} > 0$, then $X \le Y$.
 $P \operatorname{roof}$. Support not : $X > Y$. Let
 $\mathcal{E} = \frac{X - Y}{2}$. Then $\mathcal{E} > 0$ but
 $\mathcal{E} + \mathcal{E} < Y + (\mathcal{I} - \mathcal{F}) = \mathcal{X}$,
 $\operatorname{Condrad}$ is string the assumption that $\mathcal{F} \mathcal{E} \ge \mathcal{I}$.
This proves the first assurption. The 2nd follows
immediately.
Absolute Values & Triangle Inequality.
 $|\mathcal{I}| := \begin{cases} 0 & \mathcal{F} \\ -\mathcal{X} & \mathcal{F} \\ \mathcal{F} \\$

Thus
$$D \leq |x| = x \text{ or } -x \forall x \in \mathbb{R}$$

 $4 \quad |x| < r \Leftrightarrow -r < x < r (4 r > 0)$
 $i : f : \pm x < r$

Proposition. Let
$$x, y, z \in \mathbb{R}$$
. Then
(i) $|-3| = |3|$ (regardless $z > 0 \text{ or } 3.50$)
more generity iczi = icitii $\forall c, z \in \mathbb{R}$
(ii) $|x + y| \leq |x| + |y|$ ($4 |x - y| \leq |x| + |y|$)
(iii) $|x - 3| \leq |x - 3| + |y - 3|$
(iv) $||x| - |y|| \leq |x - 3|$ ($: \pm (|x| - |y|| \leq |x - y|$)
(iv) $||x| - |y|| \leq |x - 3|$ ($: \pm (|x| - |y|| \leq |x - y|$)
(iv) $||x| - |y| \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x| + |y|$
 $4 - (x + y) \leq |x|$
 $4 - (x +$

Sv (iv) follows. Ex1. Let $a, b \in \mathbb{R}$. Then $\max\{a, b\} = \frac{a+b+|a-b|}{2} \neq \min\{a, b\} = \frac{a+b-|a-b|}{2}$ i.e. What you learnt in Primary School if $\frac{1}{2} \neq \frac{3}{2} \neq \frac{3}{2} \neq \frac{3}{2} = \frac{3}{2}$

$$F \times 2 \quad (a+b)^{n} = a + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} z^{2} + \cdots + nab^{n-1} b^{n-1} b^{n-1} b^{n-2} z^{2} + \frac{n(n-1)(n-2)}{2!} b^{2} + \frac{n(n-1)(n-2)}{3!} b^{2} + \frac{n(n-1)(n-2)$$