Archimedean, Density & Inequality

Theorem (cf. Th 2.4.3 in Bartle) **This theorem has six parts of which (I) and (II) are usually referred as Archimedean Property. Proof is given immediately after the statement of each part.**

(**I)** Let x be a real number than there exists a natural number n >x.

Proof. If not then x is an upper bound of the set **N** of natural numbers and hence, by the Axiom III, sup (N) exists in R: - let

it be denoted by u : =sup (**N**). Note that u-1 < u so u-1 is NOT an upper bound of N and so u-1 < n for some natural number n and hence $u < 1+n$ and so $\overline{1}$ $1 - l$

$$
\begin{array}{l} (10+n) \leq u < 1+n & (abswardity) \\ \text{[}u & being an upper bound & 1 \mathcal{N} \mathcal{N} \mathcal{N} \text{ (0+n)} \in \mathcal{N} \end{array}.
$$

(II). Let t >0 . Then there exists a natural number n such that $1/n < t$.

Proof. Applying (I) to 1/t in place of x, take a natural number n such that $1/t < n$ (so $1/n < t$ because n and t are positive).

(III). Let $x > 1$. Then there exists (uniquely) a natural number n (usually denoted by [x]) such that

$$
n \leqslant x \leqslant n+1 \qquad \qquad (\times
$$

 ${\mathcal P}$ ${\mathcal P}$ and ${\mathcal P}$ and ${\mathcal P}$ and ${\mathcal P}$ and ${\mathcal P}$ are ${\mathcal P}$ and ${\mathcal P}$ are ${\mathcal P}$ and ${\mathcal P}$ and ${\mathcal P}$ are equal to x. Equivalently the Proof. By the well-order principle, there exists the largest nat above displayed inequalities (*) hold.

(IV) Let x be a real number. Then there exists (uniquely) an integer n satisfying (*)

Proof. Extend the well-order principle to Z (the set of integers : If Y is a nonempty subset of Z and is bounded above then Y has the largest element.

(V) Density of Q (the set of rational numbers). Let real numbers x < y. Then there exists a rational number r such that x < r <y. Proof. Progressively we consider the cases below.

(1) Suppose $1 < x < y$ and $y - x > 1$. Then the integral part [x] of x satisfies

 $[x] \leq x < [x] + 1 < y,$

(the last inequality holds thanks to the first inequality and the assumption that $y > x +1$.)

Thus $\left[x\right] + 1$ has the property required for r.

(2) Suppose 1 < x < y. Then, by the Archimedean Property (**II,** Applied to the positive number y - x), there exists a natural number m such that $(1/m) < y-x$. Then my -mx > 1 and it follows from case (1) (applied to mx, my in place of x, y) that there exists a natural number n such that mx < n <my, and so n/m is a rational number lying between x, y.

(3) The general case: x <y. By the Archimedean Property **I**, take a natural number k such that k > -x and so -k <x <y and 1 < x+k+1 <y+k+1. By (II), there exists a rational r lying between x+k+1 and y+k+1 and so r-(k+1) is a rational lying between x and y.

Exercise

1. Let $x < y$. Then there exist natural numbers m, n such that $x + \frac{1}{m} < y - \frac{1}{n}$.

Hint: Take n such that $1/n < y-x$ and then $1/m < y-x-(1/n)$. Or simply take $m = n < (y-x)/2$.

2. Let a, b be positive numbers. The $a < b$ iff $a^2 < b^2$ (iff $0 < b^2$ -a^2 = (b-a) (b+a) iff $0 < (b-a)$ because b+a and (b+a)^-1 are positive).

3. Let x, y be positive real numbers such that x^2 < a and y^2 > b. Show that there exist natural numbers m, n such that $(x + 1/n)^2 < a$ and $(y -1/m)^2 > b$.

Hint: The first requirement is $x^2 + 2x/n + 1/(n)^2 < a$ which would be satisfied if $x^2 + 2x/n + 1/n < a$ as $1/(n^2)$ is smaller (or equal to) 1/n. Such natural number n does exist by Archimedean property **II**. Similarly for the 2nd part of this exercise.

(VI) Square Root and Density of Irrationals. There exists (unique) $z > 0$ such that $z^2 = 2$ (that is, z is the positive sq root of 2). R\Q is dense : if $x < y$ then there exists an irrational number t such that $x < t < y$

Proof. Let $A = \{a : 0 < a \text{ and } a \geq 2\}$, e.g., 1 belongs to A but A is bounded above by 2 because $a \geq 2 \leq 2 \leq 2 \leq 2$ and so $a < 2$ for all a in A. By Axiom III, let z: =sup A. Then z lies in [1, 2]. Shall show that $z^2 = 2$ by showing that z^2 cannot be bigger nor smaller than 2 as detailed below.

Suppose z^2 < 2. Then, by, there exists a natural number n such that $(z + 1/n)^2 < 2$ and so $(z + 1/n)$ belongs to A and so is dominated by z (which is not possible as $1/n$ is positive), being the supremun of A.

Next consider the case z^2 > 2. Then, by, there exists a natural number m such that (z -1/m)^2 > 2 > a^2 for all a in A and so z-1/m > a for all a in A. This implies that z - 1/m dominates z by definition of z; again this is absurd as -1/m is negative. This completes the proof for the first part of **(VI).** For the 2nd part, let x < y and take (Why exists?) a rational r such that $x < r < y$ and then (with $z = sq$ roof of 2) take a natural number n such that $r + z/n < y$. Then $r + z/n$ is an irrational number lying between x and y.

Lemma on Inequality (Making life easier' Lemma)
\nSuppose
$$
x \le y + \sum_{n} \ln x \le y + \sum_{n} \ln x \le y
$$

\n $x \le y$.
\n $\sum_{n} x \le y$.
\n $\sum_{n} x \le y$.
\n $\sum_{n} x \le y + \sum_{n} x \le y$.
\n $\sum_{n} x \le y + \sum_{n} x \le y$.
\n $\sum_{n} x \le y + \sum_{n} x \le y$.
\n $\sum_{n} x \le y + \sum_{n} x \le y + \sum_{n} x = x$,
\n $\sum_{n} x \le y + \sum_{n} x \le y + \sum_{n} x = x$,
\n $\sum_{n} x \le y + \sum_{n} x \le y + \sum_{n} x = x$,
\n $\sum_{n} x \le y + \sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n $\sum_{n} x \le y + \sum_{n} x = 0$
\n

Thus
$$
D \le |x| = x
$$
 or $-x$ $\forall x \in \mathbb{R}$
\n ψ
\n $|x| \leq r \iff -v \leq x \leq r \quad (4 \text{ } r > 0)$
\n $\begin{array}{rcl}\ni x + x < r \\
\downarrow \searrow & \downarrow \searrow & \searrow\n\end{array}$

\n Proposition. Let
$$
x, y, y \in \mathbb{R}
$$
. Then\n $(i) \quad |-\frac{1}{3}| = |3| \quad (regardless, 3)0 \text{ or } 350)$ \n

\n\n (ii) $|x + y| \le |x + |y| \quad (4 |x - y| \le |x| + |y|)$ \n

\n\n (iii) $|x - 3| \le |x - y| + |y - 3|$ \n

\n\n (iv) $|x - |y| \le |x - y| + |y - 3|$ \n

\n\n (v) $|x - |y| \le |x - y| + |y - 3|$ \n

\n\n (v) $|x - |y| \le |x - y| \quad (\because \pm (|x| - |y|) \le |x - y|)$ \n

\n\n (v) $|x - |y| \le |x| + |y|$ \n

\n\n 4 - (x + y) \le |x| + |y|

\n\n 4 - (x + y) \le |x| + |y|

\n\n 4 - (x + y) \le |x| + |y|

\n\n (vi) \pm (low) \pm (subcases, from (ii)).\n

\n\n (iv) \pm (loss).\n

EM Let
$$
a, b \in \mathbb{R}
$$
. Then

\n
$$
\max\{a, b\} = \frac{a+b+|a-b|}{2} \quad \text{which is } a, b \} = \frac{a+b-|a-b|}{2}
$$
\nNow that you learnt in P, in P, in M.2'' = $\frac{3ab-3b}{2}$

\n
$$
\lim_{n \to \infty} \frac{3b-3b}{2} = \frac{3b-3b}{2}
$$

$$
E\times2 (a+b)^{n} = a^{n} + {n \choose 1}a^{n-1}b + {n \choose 2}a^{n-2}b^{n-1}b + \cdots + nab^{n-1}b^{n-1
$$